Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Nature ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720070

RESUMO

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38724285

RESUMO

Precursor diseases of multiple myeloma (MM) are monoclonal gammopathy of uncertain significance and smoldering MM. While it is well known that a percentage of those affected by these conditions will progress to MM, it is difficult to predict who will progress and when, and guidelines for screening for these conditions are lacking. Moreover, there are various models for risk stratification, though there are ongoing efforts to improve these models in order to predict who may benefit from treatment. Finally, there are various clinical trials, both past and ongoing, expanding the scope of possible treatment options for precursor diseases.

3.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699307

RESUMO

Background: Early therapeutic intervention in high-risk SMM (HR-SMM) has demonstrated benefit in previous studies of lenalidomide with or without dexamethasone. Triplets and quadruplet studies have been examined in this same population. However, to date, none of these studies examined the impact of depth of response on long-term outcomes of participants treated with lenalidomide-based therapy, and whether the use of the 20/2/20 model or the addition of genomic alterations can further define the population that would benefit the most from early therapeutic intervention. Here, we present the results of the phase II study of the combination of ixazomib, lenalidomide, and dexamethasone in patients with HR-SMM with long-term follow-up and baseline single-cell tumor and immune sequencing that help refine the population to be treated for early intervention studies. Methods: This is a phase II trial of ixazomib, lenalidomide, and dexamethasone (IRD) in HR-SMM. Patients received 9 cycles of induction therapy with ixazomib 4mg on days 1, 8, and 15; lenalidomide 25mg on days 1-21; and dexamethasone 40mg on days 1, 8, 15, and 22. The induction phase was followed by maintenance with ixazomib 4mg on days 1, 8, and 15; and lenalidomide 15mg d1-21 for 15 cycles for 24 months of treatment. The primary endpoint was progression-free survival after 2 years of therapy. Secondary endpoints included depth of response, biochemical progression, and correlative studies included single-cell RNA sequencing and/or whole-genome sequencing of the tumor and single-cell sequencing of immune cells at baseline. Results: Fifty-five patients, with a median age of 64, were enrolled in the study. The overall response rate was 93%, with 31% of patients achieving a complete response and 45% achieving a very good partial response or better. The most common grade 3 or greater treatment-related hematologic toxicities were neutropenia (16 patients; 29%), leukopenia (10 patients; 18%), lymphocytopenia (8 patients; 15%), and thrombocytopenia (4 patients; 7%). Non-hematologic grade 3 or greater toxicities included hypophosphatemia (7 patients; 13%), rash (5 patients; 9%), and hypokalemia (4 patients; 7%). After a median follow-up of 50 months, the median progression-free survival (PFS) was 48.6 months (95% CI: 39.9 - not reached; NR) and median overall survival has not been reached. Patients achieving VGPR or better had a significantly better progression-free survival (p<0.001) compared to those who did not achieve VGPR (median PFS 58.2 months vs. 31.3 months). Biochemical progression preceded or was concurrent with the development of SLiM-CRAB criteria in eight patients during follow-up, indicating that biochemical progression is a meaningful endpoint that correlates with the development of end-organ damage. High-risk 20/2/20 participants had the worst PFS compared to low- and intermediate-risk participants. The use of whole genome or single-cell sequencing of tumor cells identified high-risk aberrations that were not identified by FISH alone and aided in the identification of participants at risk of progression. scRNA-seq analysis revealed a positive correlation between MHC class I expression and response to proteasome inhibition and at the same time a decreased proportion of GZMB+ T cells within the clonally expanded CD8+ T cell population correlated with suboptimal response. Conclusions: Ixazomib, lenalidomide and dexamethasone in HR-SMM demonstrates significant clinical activity with an overall favorable safety profile. Achievement of VGPR or greater led to significant improvement in time to progression, suggesting that achieving deep response is beneficial in HR-SMM. Biochemical progression correlates with end-organ damage. Patients with high-risk FISH and lack of deep response had poor outcomes. ClinicalTrials.gov identifier: (NCT02916771).

4.
iScience ; 27(4): 109417, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510131

RESUMO

Multiple myeloma (MM) is an incurable hematological malignancy in which MYC alterations contribute to the malignant phenotype. Nevertheless, MYC lacks therapeutic druggability. Here, we leveraged large-scale loss-of-function screens and conducted a small molecule screen to identify genes and pathways with enhanced essentiality correlated with MYC expression. We reported a specific gene dependency in glutaminase (GLS1), essential for the viability and proliferation of MYC overexpressing cells. Conversely, the analysis of isogenic models, as well as cell lines dataset (CCLE) and patient datasets, revealed GLS1 as a non-oncogenic dependency in MYC-driven cells. We functionally delineated the differential modulation of glutamine to maintain mitochondrial function and cellular biosynthesis in MYC overexpressing cells. Furthermore, we observed that pharmaceutical inhibition of NAMPT selectively affects MYC upregulated cells. We demonstrate the effectiveness of combining GLS1 and NAMPT inhibitors, suggesting that targeting glutaminolysis and NAD synthesis may be a promising strategy to target MYC-driven MM.

5.
Blood Adv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513135

RESUMO

Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors in the early stages are not well-established. Here, we characterized the most recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in low-risk patients. By analyzing the clonal heterogeneity and the clonal evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results establish the genomics and clonality of MF and identify potential patients at risk of progression, independent of their clinical stage.

6.
JMIR Res Protoc ; 13: e51368, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466984

RESUMO

BACKGROUND: Obesity is an established, modifiable risk factor of multiple myeloma (MM); yet, no lifestyle interventions are routinely recommended for patients with overweight or obesity with MM precursor conditions. Prolonged nightly fasting is a simple, practical dietary regimen supported by research, suggesting that the synchronization of feeding-fasting timing with sleep-wake cycles favorably affects metabolic pathways implicated in MM. We describe the design and rationale of a randomized controlled pilot trial evaluating the efficacy of a regular, prolonged nighttime fasting schedule among individuals with overweight or obesity at high risk for developing MM or a related lymphoid malignancy. OBJECTIVE: We aim to investigate the effects of 4-month prolonged nightly fasting on body composition and tumor biomarkers among individuals with overweight or obesity with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or smoldering Waldenström macroglobulinemia (SWM). METHODS: Individuals with MGUS, SMM, or SWM aged ≥18 years and a BMI of ≥25 kg/m2 are randomized to either a 14-hour nighttime fasting intervention or a healthy lifestyle education control group. Participants' baseline diet and lifestyle patterns are characterized through two 24-hour dietary recalls: questionnaires querying demographic, comorbidity, lifestyle, and quality-of-life information; and wrist actigraphy measurements for 7 days. Fasting intervention participants are supported through one-on-one telephone counseling by a health coach and automated SMS text messaging to support fasting goals. Primary end points of body composition, including visceral and subcutaneous fat (by dual-energy x-ray absorptiometry); bone marrow adiposity (by bone marrow histology); and tumor biomarkers, specifically M-proteins and serum free light-chain concentrations (by gel-based and serum free light-chain assays), are assessed at baseline and after the 4-month study period; changes therein from baseline are evaluated using a repeated measures mixed-effects model that accounts for the correlation between baseline and follow-up measures and is generally robust to missing data. Feasibility is assessed as participant retention (percent dropout in each arm) and percentage of days participants achieved a ≥14-hour fast. RESULTS: The PROlonged nightly FASTing (PROFAST) study was funded in June 2022. Participant recruitment commenced in April 2023. As of July 2023, six participants consented to the study. The study is expected to be completed by April 2024, and data analysis and results are expected to be published in the first quarter of 2025. CONCLUSIONS: PROFAST serves as an important first step in exploring the premise that prolonged nightly fasting is a strategy to control obesity and obesity-related mechanisms of myelomagenesis. In evaluating the feasibility and impact of prolonged nightly fasting on body composition, bone marrow adipose tissue, and biomarkers of tumor burden, this pilot study may generate hypotheses regarding metabolic mechanisms underlying MM development and ultimately inform clinical and public health strategies for MM prevention. TRIAL REGISTRATION: ClinicalTrials.gov NCT05565638; http://clinicaltrials.gov/ct2/show/NCT05565638. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51368.

7.
Blood Cancer Discov ; 5(3): 146-152, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441243

RESUMO

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.


Assuntos
Ensaios Clínicos como Assunto , Mieloma Múltiplo , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Humanos , Ensaios Clínicos como Assunto/métodos , Projetos de Pesquisa , Qualidade de Vida
11.
Blood Adv ; 8(7): 1737-1746, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38212245

RESUMO

ABSTRACT: Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant condition of multiple myeloma with few known risk factors. The emergence of mass spectrometry (MS) for the detection of MGUS has provided new opportunities to evaluate its risk factors. In total, 2628 individuals at elevated risk for multiple myeloma were enrolled in a screening study and completed an exposure survey (PROMISE trial). Participant samples were screened by MS, and monoclonal proteins (M-proteins) with concentrations of ≥0.2 g/L were categorized as MS-MGUS. Multivariable logistic models evaluated associations between exposures and MS outcomes. Compared with normal weight (body mass index [BMI] of 18.5 to <25 kg/m2), obesity (BMI of ≥30 kg/m2) was associated with MS-MGUS, adjusting for age, sex, Black race, education, and income (odds ratio [OR], 1.73; 95% confidence interval [CI], 1.21-2.47; P = .003). High physical activity (≥73.5 metabolic equivalent of task (MET)-hours per week vs <10.5 MET-hours per week) had a decreased likelihood of MS-MGUS (OR, 0.45, 95% CI, 0.24-0.80; P = .009), whereas heavy smoking and short sleep had increased likelihood of MS-MGUS (>30 pack-years vs never smoker: OR, 2.19; 95% CI, 1.24-3.74; P = .005, and sleep <6 vs ≥6 hours per day: OR, 2.11; 95% CI, 1.26-3.42; P = .003). In the analysis of all MS-detected monoclonal gammopathies, which are inclusive of M-proteins with concentrations of <0.2 g/L, elevated BMI and smoking were associated with all MS-positive cases. Findings suggest MS-detected monoclonal gammopathies are associated with a broader range of modifiable risk factors than what has been previously identified. This trial was registered at www.clinicaltrials.gov as #NCT03689595.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/epidemiologia , Gamopatia Monoclonal de Significância Indeterminada/complicações , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/epidemiologia , Mieloma Múltiplo/etiologia , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/epidemiologia , Fatores de Risco
12.
Cancer Res Commun ; 3(12): 2560-2571, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38019104

RESUMO

Clonal hematopoiesis (CH) at time of autologous stem cell transplant (ASCT) has been shown to be associated with decreased overall survival (OS) and progression-free survival (PFS) in patients with multiple myeloma not receiving immunomodulatory drugs (IMiD). However, the significance of CH in newly diagnosed patients, including transplant ineligible patients, and its effect on clonal evolution during multiple myeloma therapy in the era of novel agents, has not been well studied. Using our new algorithm to differentiate tumor and germline mutations from CH, we detected CH in approximately 10% of 986 patients with multiple myeloma from the Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) cohort (40/529 transplanted and 59/457 non-transplanted patients). CH was associated with increased age, risk of recurrent bacterial infections and cardiovascular disease. CH at time of multiple myeloma diagnosis was not associated with inferior OS or PFS regardless of undergoing ASCT, and all patients benefited from IMiD-based therapies, irrespective of the presence of CH. Serial sampling of 52 patients revealed the emergence of CH over a median of 3 years of treatment, increasing its prevalence to 25%, mostly with DNMT3A mutations. SIGNIFICANCE: Using our algorithm to differentiate tumor and germline mutations from CH mutations, we detected CH in approximately 10% of patients with newly diagnosed myeloma, including both transplant eligible and ineligible patients. Receiving IMiDs improved outcomes irrespective of CH status, but the prevalence of CH significantly rose throughout myeloma-directed therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Hematopoiese Clonal , Transplante Autólogo , Transplante de Células-Tronco , Intervalo Livre de Progressão
14.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577538

RESUMO

The development of targeted therapy for patients with Multiple Myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chr1q (Amp1q) is the most frequent arm-level copy number gain in patients with MM, and it is associated with higher risk of progression and death despite recent advances in therapeutics. Thus, developing targeted therapy for patients with MM and Amp1q stands to benefit a large portion of patients in need of more effective management. Here, we employed large-scale dependency screens and drug screens to systematically characterize the therapeutic vulnerabilities of MM with Amp1q and showed increased sensitivity to the combination of MCL1 and PI3K inhibitors. Using single-cell RNA sequencing, we compared subclones with and without Amp1q within the same patient tumors and showed that Amp1q is associated with higher levels of MCL1 and the PI3K pathway. Furthermore, by isolating isogenic clones with different copy number for part of the chr1q arm, we showed increased sensitivity to MCL1 and PI3K inhibitors with arm-level gain. Lastly, we demonstrated synergy between MCL1 and PI3K inhibitors and dissected their mechanism of action in MM with Amp1q.

15.
Cell Stem Cell ; 30(9): 1262-1281.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37582363

RESUMO

RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.


Assuntos
Síndromes Mielodisplásicas , Sítios de Splice de RNA , Humanos , Multiômica , Splicing de RNA/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Mutação/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
16.
Lancet Haematol ; 10(7): e549-e556, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407144

RESUMO

Monoclonal B-cell lymphocytosis, monoclonal gammopathy of undetermined significance, and T-cell clones of uncertain significance are three premalignant conditions characterised by the presence of small clonal cell expansions in individuals without symptoms or signs that distinguish the related overt malignancies (chronic lymphocytic leukaemia, multiple myeloma, and T-cell large granular lymphocytic leukaemia). As most individuals with these precursor states never progress to malignancies, considerable interest has arisen in comprehending the steps involved in the progression to malignancy, providing more accurate models to investigate potential mechanisms of early blood cancer identification, prevention, and, possibly, intervention. Single-cell technologies and recent progress in high-throughput sequencing and multiomics approaches have contributed to a better definition of the pathophysiological mechanisms of these premalignant conditions, moving our knowledge in the field forward. In this Viewpoint, we analyse the seemingly shared biological trajectories in these precursor haematological malignancies in search of common pathogenetic events. In particular, we address the issue of interactions between expanding clones and their immune ecosystem, offering new clues that might prompt innovative ideas and inspire further investigations to understand the cellular and molecular dynamics entailing progression into overt malignant disease. The relationships between the non-leukaemic microenvironmental cells and the leukaemic counterpart, and the primary drivers of their initial clonal expansion, represent shared biologies that suggest a common identity among the premalignant conditions considered in this Viewpoint.


Assuntos
Neoplasias Hematológicas , Linfocitose , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Lesões Pré-Cancerosas , Humanos , Ecossistema , Linfócitos T , Lesões Pré-Cancerosas/patologia , Mieloma Múltiplo/diagnóstico
17.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205448

RESUMO

High expression of MYC and its target genes define a subset of germinal center B-cell diffuse large B-cell lymphoma (GCB-DLBCL) associated with poor outcomes. Half of these high-grade cases show chromosomal rearrangements between the MYC locus and heterologous enhancer-bearing loci, while focal deletions of the adjacent non-coding gene PVT1 are enriched in MYC -intact cases. To identify genomic drivers of MYC activation, we used high-throughput CRISPR-interference (CRISPRi) profiling of candidate enhancers in the MYC locus and rearrangement partner loci in GCB-DLBCL cell lines and mantle cell lymphoma (MCL) comparators that lacked common rearrangements between MYC and immunoglobulin (Ig) loci. Rearrangements between MYC and non-Ig loci were associated with unique dependencies on specific enhancer subunits within those partner loci. Notably, fitness dependency on enhancer modules within the BCL6 super-enhancer ( BCL6 -SE) cluster regulated by a transcription factor complex of MEF2B, POU2F2, and POU2AF1 was higher in cell lines bearing a recurrent MYC::BCL6 -SE rearrangement. In contrast, GCB-DLBCL cell lines without MYC rearrangement were highly dependent on a previously uncharacterized 3' enhancer within the MYC locus itself (GCBME-1), that is regulated in part by the same triad of factors. GCBME-1 is evolutionarily conserved and active in normal germinal center B cells in humans and mice, suggesting a key role in normal germinal center B cell biology. Finally, we show that the PVT1 promoter limits MYC activation by either native or heterologous enhancers and demonstrate that this limitation is bypassed by 3' rearrangements that remove PVT1 from its position in cis with the rearranged MYC gene. Key points: CRISPR-interference screens identify a conserved germinal center B cell MYC enhancer that is essential for GCB-DLBCL lacking MYC rearrangements. Functional profiling of MYC partner loci reveals principles of MYC enhancer-hijacking activation by non-immunoglobulin rearrangements.

18.
Lancet Haematol ; 10(3): e203-e212, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36858677

RESUMO

BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480-0·709) to 0·756 (0·629-0·785) at patient visit 1 to the clinic, 0·613 (0·504-0·704) to 0·720 (0·592-0·775) at visit 2, and 0·637 (0·386-0·841) to 0·756 (0·547-0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501-0·672) to 0·692 (0·614-0·736) at visit 1, 0·573 (0·518-0·647) to 0·693 (0·605-0·734) at visit 2, and 0·560 (0·497-0·645) to 0·692 (0·570-0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518-0·718) to 0·729 (0·643-0·941) for the PANGEA model (BM) and 0·670 (0·523-0·729) to 0·879 (0·586-0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Feminino , Masculino , Estudos Retrospectivos , Algoritmos , Creatinina
20.
Nat Nanotechnol ; 18(2): 184-192, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702954

RESUMO

Cancer therapies often have narrow therapeutic indexes and involve potentially suboptimal combinations due to the dissimilar physical properties of drug molecules. Nanomedicine platforms could address these challenges, but it remains unclear whether synergistic free-drug ratios translate to nanocarriers and whether nanocarriers with multiple drugs outperform mixtures of single-drug nanocarriers at the same dose. Here we report a bottlebrush prodrug (BPD) platform designed to answer these questions in the context of multiple myeloma therapy. We show that proteasome inhibitor (bortezomib)-based BPD monotherapy slows tumour progression in vivo and that mixtures of bortezomib, pomalidomide and dexamethasone BPDs exhibit in vitro synergistic, additive or antagonistic patterns distinct from their corresponding free-drug counterparts. BPDs carrying a statistical mixture of three drugs in a synergistic ratio outperform the free-drug combination at the same ratio as well as a mixture of single-drug BPDs in the same ratio. Our results address unanswered questions in the field of nanomedicine, offering design principles for combination nanomedicines and strategies for improving current front-line monotherapies and combination therapies for multiple myeloma.


Assuntos
Mieloma Múltiplo , Pró-Fármacos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Bortezomib/uso terapêutico , Dexametasona/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA